General Procedure for the Ni-Catalyzed Hydroamination of Glycals with Dioxazolones
General Procedure : In a glove box, to an oven-dried 10 mL reaction tube which equipped with a magnetic stir bar was added NiBr2·DME (3.1 mg, 0.01 mmol, 5 mol%), L4 (3.0 mg, 0.01 mmol, 5 mol%), NaI (9.0 mg, 0.06 mmol, 30 mol%) and anhydrous 1,4-dioxane/THF (4:1, 0.6 mL + 0.15 mL). The mixture was stirred for 10 min, at which time (MeO)3SiH (102 μL, 0.8 mmol, 4.0 equiv) was added, then glycals (0.2 mmol, 1.0 equiv), 1,4,2-dioxazol-5-ones (0.4 mmol, 2.0 equiv) t -BuOH (57 μL, 0.6 mmol, 3.0 equiv) was added in sequence. The reaction tube was then sealed with a plastic cap, removed from the glove box and stirred at 20 °C for 24 hours maintaining 770 rpm. Afterwards, the resulting mixture was quenched with water (10 mL) and further diluted with ethyl acetate (10 mL). Then the mixture was extracted with ethyl acetate(3x10 mL) and the combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated under vacuum. The crude material was separated on a silica gel column affording the desired produc.
Supporting Information
The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.2023xxxxx.
Acknowledgement
This work was supported by the National Natural Science Foundation of China (22122107).
References
[1] (a) Varki, A. Biological Roles of Oligosaccharides: all of the Theories are Correct. Glycobiology. 1993 , 3 , 97-130; (b) G. Davis, B. Recent developments in glycoconjugates.J. Chem. Soc., Perkin Trans. 1. 1999 , 3215-3237; (c) Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. Glycosylation and the Immune System. Science. 2001 ,291 , 2370-2376; (d) Bertozzi, C. R.; Kiessling; L., L. Chemical Glycobiology. Science. 2001 , 291 , 2357-2364; (e) Seeberger, P. H.; Werz, D. B. Synthesis and medical applications of oligosaccharides. Nature. 2007 , 446 , 1046-1051; (f) Zhu, D.; Yu, B. Synthesis of the Diverse Glycosides in Traditional Chinese Medicine. Chin. J. Chem . 2018 , 36 , 681-691.
[2] (a) Bertozzi, C. R.; Kiessling; L., L. Chemical Glycobiology.Science. 2001 , 291 , 2357-2364; (b) Feizi, T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens.Nature. 1985 , 314 , 53-57; (c) Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 2007 , 446 , 1023-1029; (d) Adams, M. M.; Damani, P.; Perl, N. R.; Won, A.; Hong, F.; Livingston, P. O.; Ragupathi, G.; Gin, D. Y. Design and Synthesis of Potent Quillaja Saponin Vaccine Adjuvants. J. Am. Chem. Soc. 2010 ,132 , 1939-1945.
[3] (a) Davis, B. G. Synthesis of Glycoproteins. Chem. Rev.2002 , 102 , 579-602; (b) St. Hilaire, P. M.; Meldal, M. Glycopeptide and Oligosaccharide Libraries. Angew. Chem. Int. Ed.2000 , 39 , 1162-1179; (c) Boons, G.-J.; Demchenko, A. V. Recent Advances in O-Sialylation. Chem. Rev. 2000 ,100 , 4539-4566; (d) Paleček, E.; Tkáč, J.; Bartošík, M.; Bertók, T.; Ostatná, V.; Paleček, J. Electrochemistry of Nonconjugated Proteins and Glycoproteins. Toward Sensors for Biomedicine and Glycomics.Chem. Rev. 2015 , 115 , 2045-2108; (e) Corcilius, L.; Payne, R. J. Stereoselective Synthesis of Sialylated Tumor-Associated Glycosylamino Acids. Org. Lett. 2013 ,15 , 5794-5797; (f) Dube, D. H.; Bertozzi, C. R. Glycans in cancer and inflammation — potential for therapeutics and diagnostics.Nature Reviews Drug Discovery. 2005 , 4 , 477-488; (g) Gaidzik, N.; Westerlind, U.; Kunz, H. The development of synthetic antitumour vaccines from mucin glycopeptide antigens. Chem. Soc. Rev. 2013 , 42 , 4421-4442; (h) Wilson, R. M.; Danishefsky, S. J. A Vision for Vaccines Built from Fully Synthetic Tumor-Associated Antigens: From the Laboratory to the Clinic. J. Am. Chem. Soc. 2013 , 135 , 14462-14472; (i) Brocke, C.; Kunz, H. Synthesis of Tumor-Associated Glycopeptide Antigens.Biorg. Med. Chem. 2002 , 10 , 3085-3112; (j) Payne, R. J.; Wong, C.-H. Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chem. Commun.2010 , 46 , 21-43.
[4] (a) Shibata, S.; Miyakawa, Y.; Naruse, T.; Nagasawa, T.; Takuma, T. A glycoprotein that induces nephrotoxic antibody: its isolation and purification from rat glomerular basement membrane. J. Immunol.1969 , 102 , 593-601; (b) Shibata, S.; Nagasawa, T.; Miyakawa, Y.; Naruse, T. Nephritogenic glycoprotein: I. Proliferative glomerulonephritis induced in rats by a single injection of the soluble glycoprotein isolated from homologous glomerular basement membrane.J. Immunol. 1971 , 106 , 1284-1294; (c) Sasaki, M.; Tachibana, K.; Nakanishi, H. An efficient and stereocontrolled synthesis of the nephritogenoside core structure. Tetrahedron Lett.1991 , 32 , 6873-6876; (d) Takeda, T.; Utsuno, A.; Okamoto, N.; Ogihara, Y.; Shibata, S. Synthesis of the α andβ anomer of an N -triglycosyl dipeptide. Carbohydr. Res. 1990 , 207 , 71-79; (e) McDonagh, A. W.; Murphy, P. V. Synthesis of α -galactosyl ceramide analogues with anα -triazole at the anomeric carbon. Tetrahedron.2014 , 70 , 3191-3196; (f) Helenius, A.; Aebi, M. Roles ofN -Linked Glycans in the Endoplasmic Reticulum. Annu. Rev. Biochem. 2004 , 73 , 1019-1049.
[5] (a) Kobayashi, Y.; Miyazaki, H.; Shiozaki, M. Syntheses of Trehazolin, Trehalamine, and the Aminocyclitol Moiety of Trehazolin: Determination of Absolute Configuration of Trehazolin. J. Org. Chem. 1994 , 59 , 813-822; (b) Ledford, B. E.; Carreira, E. M. Total Synthesis of (+)-Trehazolin: Optically Active Spirocycloheptadienes as Useful Precursors for the Synthesis of Amino Cyclopentitols. J. Am. Chem. Soc. 1995 , 117 , 11811-11812; (c) Li, J.; Lang, F.; Ganem, B. Enantioselective Approaches to Aminocyclopentitols:  A Total Synthesis of (+)-6-Epitrehazolin and a Formal Total Synthesis of (+)-Trehazolin. J. Org. Chem.1998 , 63 , 3403-3410; (d) Boiron, A.; Zillig, P.; Faber, D.; Giese, B. Synthesis of Trehazolin from D-Glucose. J. Org. Chem. 1998 , 63 , 5877-5882; (e) Berecibar, A.; Grandjean, C.; Siriwardena, A. Synthesis and biological activity of natural aminocyclopentitol glycosidase inhibitors: mannostatins, trehazolin, allosamidins, and their analogues. Chem. Rev.1999 , 99 , 779-844; (f) Kobayashi, Y. Chemistry and biology of trehazolins. Carbohydr. Res. 1999 ,315 , 3-15.
[6] (a) Li, J. S.; Cui, L.; Rock, D. L.; Li, J. Novel Glycosidic Linkage in Aedes aegypti Chorion Peroxidase: N -MANNOSYL TRYPTOPHAN. J. Biol. Chem. 2005 , 280 , 38513-38521; (b) Lin, C.-K.; Yun, W.-Y.; Lin, L.-T.; Cheng, W.-C. A concise approach to the synthesis of the unique N -mannosyl D-β -hydroxyenduracididine moiety in the mannopeptimycin series of natural products. Organic & Biomolecular Chemistry.2016 , 14 , 4054-4060; (c) Manabe, S.; Ito, Y. The first synthesis of N -Man-Trp: Alternative mannosylation modification of protein. Synlett. 2008 , 2008 , 880-882.
[7] (a) Arsequell, G.; Valencia, G. Recent advances in the synthesis of complex N -glycopeptides. Tetrahedron: Asymmetry.1999 , 10 , 3045-3094; (b) Ratcliffe, A. J.; Konradsson, P.; Fraser-Reid, B. N -Pentenyl glycosides as efficient synthons for promoter-mediated assembly of N -α-linked glycoproteins.J. Am. Chem. Soc. 1990 , 112 , 5665-5667; (c) Damkaci, F.; DeShong, P. Stereoselective Synthesis of α - andβ -Glycosylamide Derivatives from Glycopyranosyl Azides via Isoxazoline Intermediates. J. Am. Chem. Soc. 2003 ,125 , 4408-4409.
[8] (a) Noronkoski, T.; Stoineva, I. B.; Ivanov, I. P.; Petkov, D. D.; Mononen, I. Glycosylasparaginase-catalyzed Synthesis and Hydrolysis of β -Aspartyl Peptides. J. Biol. Chem. 1998 ,273 , 26295-26297; (b) Kuhn, P.; Guan, C.; Cui, T.; Tarentino, A. L.; Plummer, T. H.; Van Roey, P. Active Site and Oligosaccharide Recognition Residues of Peptide-N4-(N -acetyl-β-D-glucosaminyl)asparagine Amidase F J. Biol. Chem.1995 , 270 , 29493-29497; (c) Fan, J.-Q.; Lee, Y. C. Detailed Studies on Substrate Structure Requirements of Glycoamidases A and F. J. Biol. Chem. 1997 , 272 , 27058-27064; (d) Laupichle, L.; Sowa, C. E.; Thiem, J. Synthesis and structural studies of asparagine-modified 2-deoxy-α -N -glycopeptides associated with the renin-Angiotensin system. Biorg. Med. Chem.1994 , 2 , 1281-1294; (e) Bennett, C. S.; Galan, M. C. Methods for 2-Deoxyglycoside Synthesis. Chem. Rev. 2018 ,118 , 7931-7985.
[9] (a) Rawal, G. K.; Kumar, A.; Tawar, U.; Vankar, Y. D. New Method for Chloroamidation of Olefins. Application in the Synthesis ofN -Glycopeptides and Anticancer Agents. Org. Lett.2007 , 9 , 5171-5174; (b) Meyerhoefer, T. J.; Kershaw, S.; Caliendo, N.; Eltayeb, S.; Hanawa-Romero, E.; Bykovskaya, P.; Huang, V.; Marzabadi, C. H.; De Castro, M. A Practical Synthesis of Various 2-Deoxy-N -glycosides by Using D-Glucal. Eur. J. Org. Chem.2015 , 2015 , 2457-2462.
[10] (a) Sherry, B. D.; Loy, R. N.; Toste, F. D. Rhenium(V)-Catalyzed Synthesis of 2-Deoxy-α -glycosides. J. Am. Chem. Soc. 2004 , 126 , 4510-4511; (b) Colinas, P. A.; Bravo, R. D. A Novel Sulfonamidoglycosylation of Glycals. Org. Lett. 2003 , 5 , 4509-4511; (c) Bradshaw, G. A.; Colgan, A. C.; Allen, N. P.; Pongener, I.; Boland, M. B.; Ortin, Y.; McGarrigle, E. M. Stereoselective organocatalyzed glycosylations – thiouracil, thioureas and monothiophthalimide act as Brønsted acid catalysts at low loadings. Chemical Science. 2019 , 10 , 508-514; (d) Nakatsuji, Y.; Kobayashi, Y.; Takemoto, Y. Direct Addition of Amides to Glycals Enabled by Solvation-Insusceptible 2-Haloazolium Salt Catalysis. Angew. Chem. Int. Ed. 2019 , 58 , 14115-14119.
[11] (a) Owens, J. M.; Yeung, B. K. S.; Hill, D. C.; Petillo, P. A. Facile C1 Epimerization ofα -1-Sulfonamidyl-2-deoxy-2-iodo-glycopyranosides. J. Org. Chem. 2001 , 66 , 1484-1486; (b) Chennamadhavuni, D.; Howell, A. R. A solvent-free approach to glycosyl amides: toward the synthesis of α -N -galactosyl ceramides. Tetrahedron Lett. 2015 , 56 , 3583-3586; (c) Li, S.; Kobayashi, Y.; Takemoto, Y. Organocatalytic Direct α -SelectiveN -Glycosylation of Amide with Glycosyl Trichloroacetimidate.Chem. Pharm. Bull. 2018 , 66 , 768-770; (d) Kobayashi, Y.; Nakatsuji, Y.; Li, S.; Tsuzuki, S.; Takemoto, Y. DirectN -Glycofunctionalization of Amides with Glycosyl Trichloroacetimidate by Thiourea/Halogen Bond Donor Co-Catalysis.Angew. Chem. Int. Ed. 2018 , 57 , 3646-3650.
[12] (a) Zhu, F.; Walczak, M. A. Stereochemistry of Transition Metal Complexes Controlled by the Metallo-Anomeric Effect. J. Am. Chem. Soc. 2020 , 142 , 15127-15136; (b) Jiang, Y.; Zhang, Y.; Lee, B. C.; Koh, M. J. Diversification of Glycosyl Compounds via Glycosyl Radicals. Angew. Chem. Int. Ed. 2023 ,62 , e202305138; (c) Chen, A.; Yang, B.; Zhou, Z.; Zhu, F. Recent advances in transition-metal-catalyzed glycosyl cross-coupling reactions. Chem Catalysis. 2022 , 2 , 3430-3470; (d) Lu, K.; Ma, Y.; Liu, S.; Guo, S.; Zhang, Y. Highly Stereoselective C-Glycosylation by Photocatalytic Decarboxylative Alkynylation on Anomeric Position: A Facile Access to Alkynyl C-Glycosides. Chin. J. Chem . 2022 , 40 , 681-686; (e) Chen, A.; Xu, L.; Zhou, Z.; Zhao, S.; Yang, T.; Zhu, F. Recent advances in glycosylation involving novel anomeric radical precursors. J. Carbohydr. Chem.2021 , 40 , 361-400; (f) Zhu, W.; Sun, Q.; Chang, H.; Zhang, H.-X.; Wang, Q.; Chen, G.; He, G. Synthesis of 2-Deoxy-C-Glycosides via Iridium-Catalyzed sp2 and sp3 C—H Glycosylation with Unfunctionalized Glycals. Chin. J. Chem .2022 , 40 , 571-576.
[13] (a) Lyu, X.; Zhang, J.; Kim, D.; Seo, S.; Chang, S. Merging NiH Catalysis and Inner-Sphere Metal-Nitrenoid Transfer for Hydroamidation of Alkynes. J. Am. Chem. Soc. 2021 , 143 , 5867-5877; (b) Choi, H.; Lyu, X.; Kim, D.; Seo, S.; Chang, S. Endo-Selective Intramolecular Alkyne Hydroamidation Enabled by NiH Catalysis Incorporating Alkenylnickel Isomerization. J. Am. Chem. Soc. 2022 , 144 , 10064-10074; (c) Du, B.; Ouyang, Y.; Chen, Q.; Yu, W.-Y. Thioether-Directed NiH-Catalyzed Remote γ-C(sp3)–H Hydroamidation of Alkenes by 1,4,2-Dioxazol-5-ones. J. Am. Chem. Soc. 2021 , 143 , 14962-14968; (d) Du, B.; Chan, C.-M.; Ouyang, Y.; Chan, K.; Lin, Z.; Yu, W.-Y. NiH-catalyzed anti-Markovnikov hydroamidation of unactivated alkenes with 1,4,2-dioxazol-5-ones for the direct synthesis of N-alkyl amides. Commun. Chem. 2022 ,5 , 176; (e) Meng, L.; Yang, J.; Duan, M.; Wang, Y.; Zhu, S. Facile Synthesis of Chiral Arylamines, Alkylamines and Amides by Enantioselective NiH-Catalyzed Hydroamination. Angew. Chem. Int. Ed. 2021 , 60 , 23584-23589; (f) Zhang, Y.; Qiao, D.; Duan, M.; Wang, Y.; Zhu, S. Enantioselective synthesis ofα -aminoboronates by NiH-catalysed asymmetric hydroamidation of alkenyl boronates. Nat. Commun. 2022 , 13 , 5630.
[14] (a) McDevitt, J. P.; Lansbury, P. T. Glycosamino Acids:  New Building Blocks for Combinatorial Synthesis. J. Am. Chem. Soc.1996 , 118 , 3818-3828; (b) Schweizer, F. Glycosamino Acids: Building Blocks for Combinatorial Synthesis—Implications for Drug Discovery. Angew. Chem. Int. Ed. 2002 , 41 , 230-253; (c) Gruner, S. A. W.; Locardi, E.; Lohof, E.; Kessler, H. Carbohydrate-Based Mimetics in Drug Design:  Sugar Amino Acids and Carbohydrate Scaffolds. Chem. Rev. 2002 , 102 , 491-514; (d) Tian, G.-Z.; Wang, X.-L.; Hu, J.; Wang, X.-B.; Guo, X.-Q.; Yin, J. Recent progress of sugar amino acids: Synthetic strategies and applications as glycomimetics and peptidomimetics. Chin. Chem. Lett. 2015 , 26 , 922-930.