General Procedure for the Ni-Catalyzed Hydroamination of Glycals
with Dioxazolones
General Procedure : In a glove box, to an oven-dried 10 mL
reaction tube which equipped with a magnetic stir bar was added
NiBr2·DME (3.1 mg, 0.01 mmol, 5 mol%), L4 (3.0
mg, 0.01 mmol, 5 mol%), NaI (9.0 mg, 0.06 mmol, 30 mol%) and anhydrous
1,4-dioxane/THF (4:1, 0.6 mL + 0.15 mL). The mixture was stirred for 10
min, at which time (MeO)3SiH (102 μL, 0.8 mmol, 4.0
equiv) was added, then glycals (0.2 mmol, 1.0 equiv),
1,4,2-dioxazol-5-ones (0.4 mmol, 2.0 equiv) t -BuOH (57 μL, 0.6
mmol, 3.0 equiv) was added in sequence. The reaction tube was then
sealed with a plastic cap, removed from the glove box and stirred at 20
°C for 24 hours maintaining 770 rpm. Afterwards, the resulting mixture
was quenched with water (10 mL) and further diluted with ethyl acetate
(10 mL). Then the mixture was extracted with ethyl acetate(3x10 mL) and
the combined organic layers were dried over anhydrous
Na2SO4, filtered and concentrated under
vacuum. The crude material was separated on a silica gel column
affording the desired produc.
Supporting Information
The supporting information for this article is available on the WWW
under https://doi.org/10.1002/cjoc.2023xxxxx.
Acknowledgement
This work was supported by the National Natural Science Foundation of
China (22122107).
References
[1] (a) Varki, A. Biological Roles of Oligosaccharides: all of the
Theories are Correct. Glycobiology. 1993 , 3 ,
97-130; (b) G. Davis, B. Recent developments in glycoconjugates.J. Chem. Soc., Perkin Trans. 1. 1999 , 3215-3237; (c)
Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A.
Glycosylation and the Immune System. Science. 2001 ,291 , 2370-2376; (d) Bertozzi, C. R.; Kiessling; L., L. Chemical
Glycobiology. Science. 2001 , 291 , 2357-2364; (e)
Seeberger, P. H.; Werz, D. B. Synthesis and medical applications of
oligosaccharides. Nature. 2007 , 446 , 1046-1051;
(f) Zhu, D.; Yu, B. Synthesis of the Diverse Glycosides in Traditional
Chinese Medicine. Chin. J. Chem . 2018 , 36 ,
681-691.
[2] (a) Bertozzi, C. R.; Kiessling; L., L. Chemical Glycobiology.Science. 2001 , 291 , 2357-2364; (b) Feizi, T.
Demonstration by monoclonal antibodies that carbohydrate structures of
glycoproteins and glycolipids are onco-developmental antigens.Nature. 1985 , 314 , 53-57; (c) Varki, A.
Glycan-based interactions involving vertebrate sialic-acid-recognizing
proteins. Nature. 2007 , 446 , 1023-1029; (d)
Adams, M. M.; Damani, P.; Perl, N. R.; Won, A.; Hong, F.; Livingston, P.
O.; Ragupathi, G.; Gin, D. Y. Design and Synthesis of Potent Quillaja
Saponin Vaccine Adjuvants. J. Am. Chem. Soc. 2010 ,132 , 1939-1945.
[3] (a) Davis, B. G. Synthesis of Glycoproteins. Chem. Rev.2002 , 102 , 579-602; (b) St. Hilaire, P. M.; Meldal, M.
Glycopeptide and Oligosaccharide Libraries. Angew. Chem. Int. Ed.2000 , 39 , 1162-1179; (c) Boons, G.-J.; Demchenko, A. V.
Recent Advances in O-Sialylation. Chem. Rev. 2000 ,100 , 4539-4566; (d) Paleček, E.; Tkáč, J.; Bartošík, M.; Bertók,
T.; Ostatná, V.; Paleček, J. Electrochemistry of Nonconjugated Proteins
and Glycoproteins. Toward Sensors for Biomedicine and Glycomics.Chem. Rev. 2015 , 115 , 2045-2108; (e) Corcilius,
L.; Payne, R. J. Stereoselective Synthesis of Sialylated
Tumor-Associated Glycosylamino Acids. Org. Lett. 2013 ,15 , 5794-5797; (f) Dube, D. H.; Bertozzi, C. R. Glycans in cancer
and inflammation — potential for therapeutics and diagnostics.Nature Reviews Drug Discovery. 2005 , 4 , 477-488;
(g) Gaidzik, N.; Westerlind, U.; Kunz, H. The development of synthetic
antitumour vaccines from mucin glycopeptide antigens. Chem. Soc.
Rev. 2013 , 42 , 4421-4442; (h) Wilson, R. M.;
Danishefsky, S. J. A Vision for Vaccines Built from Fully Synthetic
Tumor-Associated Antigens: From the Laboratory to the Clinic. J.
Am. Chem. Soc. 2013 , 135 , 14462-14472; (i) Brocke, C.;
Kunz, H. Synthesis of Tumor-Associated Glycopeptide Antigens.Biorg. Med. Chem. 2002 , 10 , 3085-3112; (j) Payne,
R. J.; Wong, C.-H. Advances in chemical ligation strategies for the
synthesis of glycopeptides and glycoproteins. Chem. Commun.2010 , 46 , 21-43.
[4] (a) Shibata, S.; Miyakawa, Y.; Naruse, T.; Nagasawa, T.; Takuma,
T. A glycoprotein that induces nephrotoxic antibody: its isolation and
purification from rat glomerular basement membrane. J. Immunol.1969 , 102 , 593-601; (b) Shibata, S.; Nagasawa, T.;
Miyakawa, Y.; Naruse, T. Nephritogenic glycoprotein: I. Proliferative
glomerulonephritis induced in rats by a single injection of the soluble
glycoprotein isolated from homologous glomerular basement membrane.J. Immunol. 1971 , 106 , 1284-1294; (c) Sasaki, M.;
Tachibana, K.; Nakanishi, H. An efficient and stereocontrolled synthesis
of the nephritogenoside core structure. Tetrahedron Lett.1991 , 32 , 6873-6876; (d) Takeda, T.; Utsuno, A.;
Okamoto, N.; Ogihara, Y.; Shibata, S. Synthesis of the α andβ anomer of an N -triglycosyl dipeptide. Carbohydr.
Res. 1990 , 207 , 71-79; (e) McDonagh, A. W.; Murphy, P.
V. Synthesis of α -galactosyl ceramide analogues with anα -triazole at the anomeric carbon. Tetrahedron.2014 , 70 , 3191-3196; (f) Helenius, A.; Aebi, M. Roles ofN -Linked Glycans in the Endoplasmic Reticulum. Annu. Rev.
Biochem. 2004 , 73 , 1019-1049.
[5] (a) Kobayashi, Y.; Miyazaki, H.; Shiozaki, M. Syntheses of
Trehazolin, Trehalamine, and the Aminocyclitol Moiety of Trehazolin:
Determination of Absolute Configuration of Trehazolin. J. Org.
Chem. 1994 , 59 , 813-822; (b) Ledford, B. E.; Carreira,
E. M. Total Synthesis of (+)-Trehazolin: Optically Active
Spirocycloheptadienes as Useful Precursors for the Synthesis of Amino
Cyclopentitols. J. Am. Chem. Soc. 1995 , 117 ,
11811-11812; (c) Li, J.; Lang, F.; Ganem, B. Enantioselective Approaches
to Aminocyclopentitols: A Total Synthesis of (+)-6-Epitrehazolin and a
Formal Total Synthesis of (+)-Trehazolin. J. Org. Chem.1998 , 63 , 3403-3410; (d) Boiron, A.; Zillig, P.; Faber,
D.; Giese, B. Synthesis of Trehazolin from D-Glucose. J. Org.
Chem. 1998 , 63 , 5877-5882; (e) Berecibar, A.;
Grandjean, C.; Siriwardena, A. Synthesis and biological activity of
natural aminocyclopentitol glycosidase inhibitors: mannostatins,
trehazolin, allosamidins, and their analogues. Chem. Rev.1999 , 99 , 779-844; (f) Kobayashi, Y. Chemistry and
biology of trehazolins. Carbohydr. Res. 1999 ,315 , 3-15.
[6] (a) Li, J. S.; Cui, L.; Rock, D. L.; Li, J. Novel Glycosidic
Linkage in Aedes aegypti Chorion Peroxidase: N -MANNOSYL
TRYPTOPHAN. J. Biol. Chem. 2005 , 280 ,
38513-38521; (b) Lin, C.-K.; Yun, W.-Y.; Lin, L.-T.; Cheng, W.-C. A
concise approach to the synthesis of the unique N -mannosyl
D-β -hydroxyenduracididine moiety in the mannopeptimycin series of
natural products. Organic & Biomolecular Chemistry.2016 , 14 , 4054-4060; (c) Manabe, S.; Ito, Y. The first
synthesis of N -Man-Trp: Alternative mannosylation modification of
protein. Synlett. 2008 , 2008 , 880-882.
[7] (a) Arsequell, G.; Valencia, G. Recent advances in the synthesis
of complex N -glycopeptides. Tetrahedron: Asymmetry.1999 , 10 , 3045-3094; (b) Ratcliffe, A. J.; Konradsson,
P.; Fraser-Reid, B. N -Pentenyl glycosides as efficient synthons
for promoter-mediated assembly of N -α-linked glycoproteins.J. Am. Chem. Soc. 1990 , 112 , 5665-5667; (c)
Damkaci, F.; DeShong, P. Stereoselective Synthesis of α - andβ -Glycosylamide Derivatives from Glycopyranosyl Azides via
Isoxazoline Intermediates. J. Am. Chem. Soc. 2003 ,125 , 4408-4409.
[8] (a) Noronkoski, T.; Stoineva, I. B.; Ivanov, I. P.; Petkov, D.
D.; Mononen, I. Glycosylasparaginase-catalyzed Synthesis and Hydrolysis
of β -Aspartyl Peptides. J. Biol. Chem. 1998 ,273 , 26295-26297; (b) Kuhn, P.; Guan, C.; Cui, T.; Tarentino, A.
L.; Plummer, T. H.; Van Roey, P. Active Site and Oligosaccharide
Recognition Residues of
Peptide-N4-(N -acetyl-β-D-glucosaminyl)asparagine Amidase F J. Biol. Chem.1995 , 270 , 29493-29497; (c) Fan, J.-Q.; Lee, Y. C.
Detailed Studies on Substrate Structure Requirements of Glycoamidases A
and F. J. Biol. Chem. 1997 , 272 , 27058-27064; (d)
Laupichle, L.; Sowa, C. E.; Thiem, J. Synthesis and structural studies
of asparagine-modified 2-deoxy-α -N -glycopeptides
associated with the renin-Angiotensin system. Biorg. Med. Chem.1994 , 2 , 1281-1294; (e) Bennett, C. S.; Galan, M. C.
Methods for 2-Deoxyglycoside Synthesis. Chem. Rev. 2018 ,118 , 7931-7985.
[9] (a) Rawal, G. K.; Kumar, A.; Tawar, U.; Vankar, Y. D. New Method
for Chloroamidation of Olefins. Application in the Synthesis ofN -Glycopeptides and Anticancer Agents. Org. Lett.2007 , 9 , 5171-5174; (b) Meyerhoefer, T. J.; Kershaw, S.;
Caliendo, N.; Eltayeb, S.; Hanawa-Romero, E.; Bykovskaya, P.; Huang, V.;
Marzabadi, C. H.; De Castro, M. A Practical Synthesis of Various
2-Deoxy-N -glycosides by Using D-Glucal. Eur. J. Org. Chem.2015 , 2015 , 2457-2462.
[10] (a) Sherry, B. D.; Loy, R. N.; Toste, F. D.
Rhenium(V)-Catalyzed Synthesis of 2-Deoxy-α -glycosides. J.
Am. Chem. Soc. 2004 , 126 , 4510-4511; (b) Colinas, P.
A.; Bravo, R. D. A Novel Sulfonamidoglycosylation of Glycals. Org.
Lett. 2003 , 5 , 4509-4511; (c) Bradshaw, G. A.; Colgan,
A. C.; Allen, N. P.; Pongener, I.; Boland, M. B.; Ortin, Y.; McGarrigle,
E. M. Stereoselective organocatalyzed glycosylations – thiouracil,
thioureas and monothiophthalimide act as Brønsted acid catalysts at low
loadings. Chemical Science. 2019 , 10 , 508-514;
(d) Nakatsuji, Y.; Kobayashi, Y.; Takemoto, Y. Direct Addition of Amides
to Glycals Enabled by Solvation-Insusceptible 2-Haloazolium Salt
Catalysis. Angew. Chem. Int. Ed. 2019 , 58 ,
14115-14119.
[11] (a) Owens, J. M.; Yeung, B. K. S.; Hill, D. C.; Petillo, P. A.
Facile C1 Epimerization ofα -1-Sulfonamidyl-2-deoxy-2-iodo-glycopyranosides. J. Org.
Chem. 2001 , 66 , 1484-1486; (b) Chennamadhavuni, D.;
Howell, A. R. A solvent-free approach to glycosyl amides: toward the
synthesis of α -N -galactosyl ceramides. Tetrahedron
Lett. 2015 , 56 , 3583-3586; (c) Li, S.; Kobayashi, Y.;
Takemoto, Y. Organocatalytic Direct α -SelectiveN -Glycosylation of Amide with Glycosyl Trichloroacetimidate.Chem. Pharm. Bull. 2018 , 66 , 768-770; (d)
Kobayashi, Y.; Nakatsuji, Y.; Li, S.; Tsuzuki, S.; Takemoto, Y. DirectN -Glycofunctionalization of Amides with Glycosyl
Trichloroacetimidate by Thiourea/Halogen Bond Donor Co-Catalysis.Angew. Chem. Int. Ed. 2018 , 57 , 3646-3650.
[12] (a) Zhu, F.; Walczak, M. A. Stereochemistry of Transition Metal
Complexes Controlled by the Metallo-Anomeric Effect. J. Am. Chem.
Soc. 2020 , 142 , 15127-15136; (b) Jiang, Y.; Zhang, Y.;
Lee, B. C.; Koh, M. J. Diversification of Glycosyl Compounds via
Glycosyl Radicals. Angew. Chem. Int. Ed. 2023 ,62 , e202305138; (c) Chen, A.; Yang, B.; Zhou, Z.; Zhu, F. Recent
advances in transition-metal-catalyzed glycosyl cross-coupling
reactions. Chem Catalysis. 2022 , 2 , 3430-3470;
(d) Lu, K.; Ma, Y.; Liu, S.; Guo, S.; Zhang, Y. Highly Stereoselective
C-Glycosylation by Photocatalytic Decarboxylative Alkynylation on
Anomeric Position: A Facile Access to Alkynyl C-Glycosides. Chin.
J. Chem . 2022 , 40 , 681-686; (e) Chen, A.; Xu, L.;
Zhou, Z.; Zhao, S.; Yang, T.; Zhu, F. Recent advances in glycosylation
involving novel anomeric radical precursors. J. Carbohydr. Chem.2021 , 40 , 361-400; (f) Zhu, W.; Sun, Q.; Chang, H.;
Zhang, H.-X.; Wang, Q.; Chen, G.; He, G. Synthesis of
2-Deoxy-C-Glycosides via Iridium-Catalyzed sp2 and sp3 C—H
Glycosylation with Unfunctionalized Glycals. Chin. J. Chem .2022 , 40 , 571-576.
[13] (a) Lyu, X.; Zhang, J.; Kim, D.; Seo, S.; Chang, S. Merging NiH
Catalysis and Inner-Sphere Metal-Nitrenoid Transfer for Hydroamidation
of Alkynes. J. Am. Chem. Soc. 2021 , 143 ,
5867-5877; (b) Choi, H.; Lyu, X.; Kim, D.; Seo, S.; Chang, S.
Endo-Selective Intramolecular Alkyne Hydroamidation Enabled by NiH
Catalysis Incorporating Alkenylnickel Isomerization. J. Am. Chem.
Soc. 2022 , 144 , 10064-10074; (c) Du, B.; Ouyang, Y.;
Chen, Q.; Yu, W.-Y. Thioether-Directed NiH-Catalyzed Remote γ-C(sp3)–H
Hydroamidation of Alkenes by 1,4,2-Dioxazol-5-ones. J. Am. Chem.
Soc. 2021 , 143 , 14962-14968; (d) Du, B.; Chan, C.-M.;
Ouyang, Y.; Chan, K.; Lin, Z.; Yu, W.-Y. NiH-catalyzed anti-Markovnikov
hydroamidation of unactivated alkenes with 1,4,2-dioxazol-5-ones for the
direct synthesis of N-alkyl amides. Commun. Chem. 2022 ,5 , 176; (e) Meng, L.; Yang, J.; Duan, M.; Wang, Y.; Zhu, S.
Facile Synthesis of Chiral Arylamines, Alkylamines and Amides by
Enantioselective NiH-Catalyzed Hydroamination. Angew. Chem. Int.
Ed. 2021 , 60 , 23584-23589; (f) Zhang, Y.; Qiao, D.;
Duan, M.; Wang, Y.; Zhu, S. Enantioselective synthesis ofα -aminoboronates by NiH-catalysed asymmetric hydroamidation of
alkenyl boronates. Nat. Commun. 2022 , 13 , 5630.
[14] (a) McDevitt, J. P.; Lansbury, P. T. Glycosamino Acids: New
Building Blocks for Combinatorial Synthesis. J. Am. Chem. Soc.1996 , 118 , 3818-3828; (b) Schweizer, F. Glycosamino
Acids: Building Blocks for Combinatorial Synthesis—Implications for
Drug Discovery. Angew. Chem. Int. Ed. 2002 , 41 ,
230-253; (c) Gruner, S. A. W.; Locardi, E.; Lohof, E.; Kessler, H.
Carbohydrate-Based Mimetics in Drug Design: Sugar Amino Acids and
Carbohydrate Scaffolds. Chem. Rev. 2002 , 102 ,
491-514; (d) Tian, G.-Z.; Wang, X.-L.; Hu, J.; Wang, X.-B.; Guo, X.-Q.;
Yin, J. Recent progress of sugar amino acids: Synthetic strategies and
applications as glycomimetics and peptidomimetics. Chin. Chem.
Lett. 2015 , 26 , 922-930.