Debbie Maurer

and 19 more

Background: The impact of physical activity (PA) on immune response is a hot topic in exercise immunology, but studies involving asthmatic children are scarce. We examine the level of PA and TV attendance (TVA) in asthmatic children to assess the role on asthma control and immune response to various stimulants. Methods: Weekly PA and daily TVA were obtained from questionnaires at inclusion of the PreDicta study. PBMC cultures were stimulated with phytohemagglutinin (PHA), R848, poly I:C and zymosan. Cytokines were measured and quantified in cell culture supernatants using luminometric multiplex immunofluorescence beads-based assay. Results: Asthmatic preschoolers showed significantly more TVA than their healthy peers (58.6% vs. 41.5% 1-3h daily and only 25.7% vs. 47.2% ≤ 1h daily). Poor asthma control was associated with less frequent PA (75% no or occasional activity in uncontrolled vs. 20% in controlled asthma; 25% ≥ 3x weekly vs. 62%). Asthmatics with increased PA exhibited elevated cytokine levels in response to stimulants, suggesting a readiness of circulating immune cells for type-1, -2 and -17 cytokine release compared to low-PA and high-TVA subjects. Low PA and high TVA were associated with increased proinflammatory cytokines. Proinflammatory cytokines were correlating with each other in in-vitro immune responses of asthmatic children, but not healthy controls. Conclusion: Asthmatic children show more sedentary behavior than healthy subjects, while poor asthma control leads to a decrease in PA. Asthmatic children profit from exercise, as elevated cytokine levels in stimulated conditions indicate an immune system prepared for a strong response in case of infection.

Ya-dong Gao

and 19 more

The coronavirus disease 2019 pandemic (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an unprecedented global social and economic impact, and numerous deaths. Many risk factors have been identified in the progression of COVID-19 into a severe and critical stage, including old age, male gender, underlying comorbidities such as hypertension, diabetes, obesity, chronic lung disease, heart, liver and kidney diseases, tumors, clinically apparent immunodeficiencies, local immunodeficiencies, such as early type-I interferon secretion capacity, and pregnancy. Possible complications include acute respiratory distress syndrome, shock, disseminated coagulopathy, acute kidney injury, pulmonary embolism, and secondary bacterial pneumonia. The development of lymphopenia and eosinopenia are laboratory indicators of COVID-19. Laboratory parameters to monitor disease progression include lactate dehydrogenase, procalcitonin, high-sensitivity C-reactive protein, proinflammatory cytokines such as interleukin (IL)-6, IL-1, Krebs von den Lungen-6 (KL-6) and ferritin. The development of a cytokine storm and extensive chest computed tomography imaging patterns are indicators of a severe disease. In addition, socioeconomic status, diet, lifestyle, geographical differences, ethnicity, exposed viral load, day of initiation of treatment, and quality of health care have been reported to influence individual outcomes. In this review, we highlight the scientific evidence on the risk factors of COVID-19.

Lacin Cevhertas

and 21 more

CARMEN RIGGIONI

and 41 more

In December 2019, China reported the first cases of the coronavirus disease 2019 (COVID-19). This disease, caused by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), has developed into a pandemic. To date it has resulted in ~5.6 million confirmed cases and caused 353,334 related deaths worldwide. Unequivocally, the COVID-19 pandemic is the gravest health and socio-economic crisis of our time. In this context, numerous questions have emerged in demand of basic scientific information and evidence-based medical advice on SARS-CoV-2 and COVID-19. Although the majority of the patients show a very mild, self-limiting viral respiratory disease, many clinical manifestations in severe patients are unique to COVID-19, such as severe lymphopenia and eosinopenia, extensive pneumonia, a “cytokine storm” leading to acute respiratory distress syndrome, endothelitis, thrombo-embolic complications and multiorgan failure. The epidemiologic features of COVID-19 are distinctive and have changed throughout the pandemic. Vaccine and drug development studies and clinical trials are rapidly growing at an unprecedented speed. However, basic and clinical research on COVID-19-related topics should be based on more coordinated high-quality studies. This paper answers pressing questions, formulated by young clinicians and scientists, on SARS-CoV-2, COVID-19 and allergy, focusing on the following topics: virology, immunology, diagnosis, management of patients with allergic disease and asthma, treatment, clinical trials, drug discovery, vaccine development and epidemiology. Over 140 questions were answered by experts in the field providing a comprehensive and practical overview of COVID-19 and allergic disease.