Doan Thi Nhinh

and 5 more

Edwardsiella ictaluri is an emerging bacterial pathogen that affects farmed tilapia ( Oreochromis spp.). This study reports the arrival, establishment, and widespread findings of E. ictaluri in farmed tilapia in Vietnam. Among 26 disease outbreaks from 9 provinces in Northern Vietnam during 2019–2021, 19 outbreaks originated from imported seeds, while outbreaks in seven farms were from domestic sources. Clinically sick fish showed the appearance of numerous white spots in visceral organs, and accumulative mortality reached 30%–65%. Twenty-six representative bacterial isolates recovered from 26 disease outbreaks were identified as E. ictaluri based on a combination of phenotypic tests, genus- and species-specific polymerase chain reaction assays, 16S rRNA and gyrB sequencing, and phylogenetic analysis. All isolates harbored the same virulence gene profiles esrC +, evpC +, ureA-C +, eseI-, escD-, and virD4-. Antimicrobial susceptibility tests revealed that 80.8%–100% of isolates were multidrug resistant, with resistance to 4–8 antimicrobials in the groups of penicillin, macrolides, sulfonamides, amphenicols, and glycopeptides. The experimental challenge successfully induced disease that mimicked natural infection. The median lethal doses (LD 50) of the tested isolates (n = 4) were 42–61 colony forming units/fish, indicating their extremely high virulence. This emerging pathogen is established and has spread to various geographical locations, causing serious impacts on farmed tilapia in northern Vietnam. It is likely that this pathogen will continue to spread through contaminated stocks (both imported and domestic sources) and persist. Thus, increased awareness, combined with biosecurity measures and emergent vaccination programs is essential to mitigate the negative impact of this emerging disease on the tilapia farming industry.

Le Thanh Dien

and 7 more

Bacteriophage is considered an alternative to antibiotics and environmentally friendly approach to tackle antimicrobial resistance (AMR) in aquaculture. Here, we reported isolation, morphology and genomic characterizations of a newly isolated lytic bacteriophage, designated pAh6.2TG. Host range and stability of pAh6.2TG in different environmental conditions, and protective efficacy against a pathogenic multidrug-resistant (MDR) Aeromonas hydrophila in Nile tilapia were subsequently evaluated. The results showed that pAh6.2TG is a member of the family Myoviridae which has genome size of 51,780 bp, encoding 65 putative open reading frames (ORFs), and is most closely related to Aeromonas phage PVN02 (99.33% nucleotide identity). The pAh6.2TG was highly specific to A. hydrophila and infected 83.3% tested strains of MDR A. hydrophila (10 out of 12) with relative stability at pH 7 ­ 9, temperature 0 ­ 40 °C and salinity 0 ­ 40 ppt. In experimental challenge, pAh6.2TG treatments significantly improved survivability of Nile tilapia exposed to a lethal dose of the pathogenic MDR A. hydrophila, with relative percent survival (RPS) of 73.3% and 50% for phage multiplicity of infection (MOI) 1.0 and 0.1, respectively. Significant reduction of bacterial counts in rearing water at 3 h (6.7 ± 0.5 to 18.1 ± 6.98 folds) and in fish liver at 48 h post-treatment (2.7 ± 0.24 to 34.08 ± 26.4 folds) was observed in phage treatment groups while opposite pattern for bacterial counts was observed in untreated control. Interestingly, the surviving fish provoked specific antibody (IgM) against the challenged A. hydrophila. These results might explain the higher survival in phage treatment groups. In summary, the findings suggested that the lytic bacteriophage pAh6.2TG is an effective alternative to antibiotics to control MDR A. hydrophila in tilapia and possibly other freshwater fish.