Roi Hendler

and 4 more

Southern African savanna rangelands are facing a widespread degradation pattern called bush encroachment. This is associated with implications for various aspects of the water cycle and in particular canopy transpiration. At the individual-tree scale, it is estimated by scaling sap-flux density by sapwood area. However, the direct measurement of sapwood area is impracticable at landscape scale and general allometric equations of the West-Brown-Enquist (WBE) model relating sapwood area to primary size measures seem to fail for some species and climates. Therefore, we conducted intensive field measurements to establish species-specific allometric relationships between sapwood area and sizes (stem diameter, crown area) in six dominant shrub species involved in bush encroachment in Namibia ( Colophospermum mopane, Senegalia mellifera, Vachellia reficiens, Dichrostachys cinerea, Vachellia nebrownii, Catophractes alexandri). We found strong allometric relationships between sapwood area and stem diameter as well as between sapwood area and crown area for all six species. These relations are largely in line with the WBE theory but still provide estimates that are more accurate. Only in D. cinerea, the sapwood area was significantly smaller than predicted by the WBE theory, which might be caused by a larger need for stabilizing heartwood. Our results are useful to estimate water loss via transpiration at a large scale using remote sensing techniques and can promote our understanding of the ecohydrological conditions that drive species specific bush encroachment in savannas. This is particularly important in the light of climate change, which is considered to have major implications on ecohydrological processes in savannas.

Katja Irob

and 7 more

Changing climatic conditions and unsustainable land use are perceived as major threats to savannas worldwide. In the past, land use in African savannas was dominated by livestock-farming as one of the major economic products, which led to degraded, shrub encroached pastures in many regions. One response to this widespread degradation is a shift from land use dominated by cattle to strategies characterized by animal compositions with more mixed feeding regimes and higher browser proportions. However, the consequences for ecosystem properties and processes remain so far largely unclear. We used the ecohydrological, spatially explicit savanna model EcoHyD to assess the impacts of two contrasting, herbivore-related land use strategies on a Namibian savannah: grazing versus browsing herbivores. We varied the densities of grazers and browsers and determined the resulting composition and diversity of the plant community, total vegetation cover, soil moisture and water use by plants. Our results show that properties making plants less attractive to herbivores were best adapted to different densities of grazing (cattle) or browsing (pure browsing wildlife) animals. Also, properties leading to a competitive advantage under limited water availability were among the dominant ones. Overall, the results are in line with our expectations: we found heavy shrub encroachment with a loss of the perennial grass matrix under high stocking rates of cattle. A novel and unexpected result was that regardless of the density of browsers, grass cover and plant functional diversity were significantly higher in wildlife scenarios. This increased grass cover, but also the higher total cover improved water uptake by plants. We conclude that in contrast to grazers, browsers even in high densities do not lead to ecosystem degradation, but rather sustain a diverse vegetation with high cover of perennial grasses over a long time, implying also a lower erosion risk and higher provision of ecosystem services.