Hui Wu

and 6 more

A major challenge in the inversion of subsurface parameters is the ill-posedness issue caused by the inherent subsurface complexities and the generally spatially sparse data. Appropriate simplifications of inversion models are thus necessary to make the inversion process tractable and meanwhile preserve the predictive ability of the inversion results. In the present study, we investigate the effect of model complexity on the inversion of fracture aperture distribution as well as the prediction of long-term thermal performance in a field-scale single-fracture EGS model. Principal component analysis (PCA) was used to map the original cell-based aperture field to a low-dimensional latent space. The complexity of the inversion model was quantitatively represented by the percentage of total variance in the original aperture fields preserved by the latent space. Tracer, pressure and flow rate data were used to invert for fracture aperture through an ensemble-based inversion method, and the inferred aperture field was then used to predict thermal performance. We found that an over-simplified aperture model could not reproduce the inversion data and the predicted thermal response was biased. A complex aperture model could reproduce the data but the thermal prediction showed significant uncertainty. A model with moderate complexity, although not resolving many fine features in the “true” aperture field, successfully matched the data and predicted the long-term thermal behavior. The results provide important insights into the selection of model complexity for effective subsurface reservoir inversion and prediction.

Xin Ju

and 3 more

A potential risk of injecting CO2 into storage reservoirs with marginal permeability (≲ 10-14 m2) is that commercial injection rates could induce fracturing of the reservoir and/or the caprock. Such fracturing is essentially fluid-driven fracturing in the leakoff-dominated regime. Recent studies suggested that fracturing, if contained within the lower portion of the caprock complex, could substantially improve the injectivity without compromising the overall seal integrity. Modeling this phenomenon entails complex coupled interactions among the fluids, the fracture, the reservoir, and the caprock. We develop a simple method to capture all these interplays in high fidelity by sequentially coupling a hydraulic fracturing module with a coupled thermal-hydrological-mechanical (THM) model for nonisothermal multiphase flow. The model was made numerically tractable by taking advantage of self-stabilizing features of leakoff-dominated fracturing. The model is validated against the PKN solution in the leakoff-dominated regime. Moreover, we employ the model to study thermo-poromechanical responses of a fluid-driven fracture in a field-scale carbon storage reservoir that is loosely based on the In Salah project’s Krechba reservoir. The model reveals complex yet intriguing behaviors of the reservoir-caprock-fluid system with fracturing induced by cold CO2 injection. We also study the effects of the in situ stress contrast between the reservoir and caprock and thermal contraction on the vertical containment of the fracture. The proposed model proves effective in simulating practical problems on length and time scales relevant to geological carbon storage.

Hui Wu

and 4 more

Predicting the thermal performance of an enhanced geothermal system (EGS) requires a comprehensive characterization of the underlying fracture flow patterns from practically available data such as tracer data. However, due to the inherent complexities of subsurface fractures and the generally insufficient geological/geophysical data, interpreting tracer data for fracture flow characterization and thermal prediction remains a challenging task. The present study aims to tackle the challenge by leveraging a data assimilation method to maximize the utilization of information inherently contained in tracer data, and meanwhile maintain the flexibility to handle various uncertainties. A tracer data interpretation framework was proposed with the following three components integrated: 1) We use principal component analysis (PCA) to reduce the dimensionality of model parameter space. 2) We use ES-MDA (ensemble smoother with multiple data assimilation) to invert for fracture aperture/flow fields and obtain posterior model ensembles for uncertainty quantification. Various data types are assimilated jointly to improve the predictive ability of the posterior ensemble. 3) The inverted fracture aperture fields are then incorporated into reservoir models to predict thermal performance. We developed a field-scale EGS model to verify the ability of the framework to characterize highly heterogeneous fracture aperture/flow fields and predicting thermal performance. We also applied the framework to a meso-scale field experiment to demonstrate its potential application in real-world geothermal reservoirs. The results indicate that the proposed framework can effectively retrieve fracture flow information from tracer data for thermal prediction and uncertainty quantification, and thus provide informative guidance for EGS optimization and risk management.