Andrew Bennett

and 4 more

Water resources planning often uses streamflow predictions made by hydrologic models. These simulated predictions have systematic errors which limit their usefulness as input to water management models. To account for these errors, streamflow predictions are bias-corrected through statistical methods which adjust model predictions based on comparisons to reference datasets (such as observed streamflow). Existing bias-correction methods have several shortcomings when used to correct spatially-distributed streamflow predictions. First, existing bias-correction methods destroy the spatio-temporal consistency of the streamflow predictions, when these methods are applied independently at multiple sites across a river network. Second, bias-correction techniques are usually built on simple, time-invariant mappings between reference and simulated streamflow without accounting for the hydrologic processes which underpin the systematic errors. We describe improved bias-correction techniques which account for the river network topology and which allow for corrections that are process-conditioned. Further, we present a workflow that allows the user to select whether to apply these techniques separately or in conjunction. We evaluate four different bias-correction methods implemented with our workflow in the Yakima River Basin in the Pacific Northwestern United States. We find that all four methods reduce systematic bias in the simulated streamflow. The spatially-consistent bias-correction methods produce spatially-distributed streamflow as well as bias-corrected incremental streamflow, which is suitable for input to water management models. We also find that the process-conditioning methods improve the timing of the corrected streamflow when conditioned on daily minimum temperature, which we use as a proxy for snowmelt processes

Bart Nijssen

and 2 more

Planning for hydropower, water resources management, and climate change adaptation requires statistically unbiased hydrologic predictions. However, all hydrologic models contain systematic errors, e.g., incorrect mathematical representations of physical processes and effects of uncertainties in data sources. Statistical post-processing, or bias correction, is often used to reduce the effects of these systematic errors in model outputs. A large number of techniques for performing bias correction has been developed, primarily in the context of correcting statistical properties of independent locations. However, when bias correcting streamflow predictions within the same stream network, this assumption of spatial independence breaks down. Independently bias correcting locations from the headwaters to the mouth of a river system destroys the spatial consistency of the streamflow across a river network. We describe work toward maintaining spatial consistency in streamflow bias correction using a number of locations in the western United States. We simulate the hydrology of the Columbia River in the Pacific Northwestern United States, a river system that spans a number of hydroclimatic and flow regimes that contains a large number of flow gages. We develop a mapping from the modeled output at the gages with flow observations, which we use as the basis for training a machine learning (ML) model to perform the site-specific bias correction. We then apply the ML model to local streamflow contributions for each river segment, including river segments without flow observations. Finally, we combine the local bias corrections across the stream network, to create accumulated bias-corrected streamflow time series that are spatially-consistent across the stream network. We compare our method against several commonly used bias correction techniques to evaluate both model performance and spatial consistency.