Hiroshi Hasegawa

and 10 more

The Kelvin-Helmholtz instability (KHI) at Earth’s magnetopause and associated turbulence are suggested to play a role in the transport of mass and momentum from the solar wind into Earth’s magnetosphere. We investigate electromagnetic turbulence observed in KH vortices encountered at the dusk flank magnetopause by the Magnetospheric Multiscale (MMS) spacecraft under northward interplanetary magnetic field (IMF) conditions in order to reveal its generation process, mode properties, and role. A comparison with another MMS event at the dayside magnetopause with reconnection but no KHI signatures under a similar IMF condition indicates that while high-latitude magnetopause reconnection excites a modest level of turbulence in the dayside low-latitude boundary layer, the KHI further amplifies the turbulence, leading to magnetic energy spectra with a power-law index –5/3 at magnetohydrodynamic scales even in its early nonlinear phase. The mode of the electromagnetic turbulence is analyzed with a single-spacecraft method based on Ampère’s law, developed by Bellan (2016), for estimating wave vectors as a function of spacecraft-frame frequency. The results suggest that the turbulence does not consist of propagating normal-mode waves, but is due to interlaced magnetic flux tubes advected by plasma flows in the vortices. The turbulence at sub-ion scales in the early nonlinear phase of the KHI may not be the cause of the plasma transport across the magnetopause, but rather a consequence of three-dimensional vortex induced reconnection, the process that can cause an efficient transport by producing tangled reconnected field lines.

Steven J. Schwartz

and 10 more

Shock waves are common in the heliosphere and beyond. The collisionless nature of most astrophysical plasmas allows for the energy processed by shocks to be partitioned amongst particle sub-populations and electromagnetic fields via physical mechanisms that are not well understood. The electrostatic potential across such shocks is frame dependent. In a frame where the incident bulk velocity is parallel to the magnetic field, the deHoffmann-Teller frame, the potential is linked directly to the ambipolar electric field established by the electron pressure gradient. Thus measuring and understanding this potential solves the electron partition problem, and gives insight into other competing shock processes. Integrating measured electric fields is space is problematic since the measurements can have offsets that change with plasma conditions. The offsets, once integrated, can be as large or larger than the shock potential. Here we exploit the high-quality field and plasma measurements from NASA's Magnetospheric Multiscale mission to attempt this calculation. We investigate recent adaptations of the deHoffmann-Teller frame transformation to include time variability, and conclude that in practise these face difficulties inherent in the 3D time-dependent nature of real shocks by comparison to 1D simulations. Potential estimates based on electron fluid and kinetic analyses provide the most robust measures of the deHoffmann-Teller potential, but with some care direct integration of the electric fields can be made to agree. These results suggest that it will be difficult to independently assess the role of other processes, such as scattering by shock turbulence, in accounting for the electron heating.

Hiroshi Hasegawa

and 21 more

We present observations in Earth’s magnetotail by the Magnetospheric Multiscale spacecraft that are consistent with magnetic field annihilation, rather than magnetic topology change, causing fast magnetic-to-electron energy conversion in an electron-scale current sheet. Multi-spacecraft analysis for the magnetic field reconstruction shows that an electron-scale magnetic island was embedded in the observed electron diffusion region (EDR), suggesting an elongated shape of the EDR. Evidence for the annihilation was revealed in the form of the island growing at a rate much lower than expected for the standard collisionless reconnection, which indicates that magnetic flux injected into the EDR was not ejected from the X-point or accumulated in the island, but was dissipated in the EDR. This energy conversion process is in contrast to that in the standard EDR of a reconnecting current sheet where the energy of antiparallel magnetic fields is mostly converted to electron bulk-flow energy. Fully kinetic simulation also demonstrates that an elongated EDR is subject to the formation of electron-scale magnetic islands in which fast but transient annihilation can occur. Consistent with the observations and simulation, theoretical analysis shows that fast magnetic diffusion can occur in an elongated EDR in the presence of nongyrotropic electron effects. We suggest that the annihilation in elongated EDRs may contribute to the dissipation of magnetic energy in a turbulent collisionless plasma.

Julia E. Stawarz

and 16 more

Decomposing the electric field (E) into the contributions from generalized Ohm’s law provides key insight into both nonlinear and dissipative dynamics across the full range of scales within a plasma. Using high-resolution, multi-spacecraft measurements of three intervals in Earth’s magnetosheath from the Magnetospheric Multiscale mission, the influence of the magnetohydrodynamic, Hall, electron pressure, and electron inertia terms from Ohm’s law, as well as the impact of a finite electron mass, on the turbulent spectrum are examined observationally for the first time. The magnetohydrodynamic, Hall, and electron pressure terms are the dominant contributions to over the accessible length scales, which extend to scales smaller than the electron inertial length at the greatest extent, with the Hall and electron pressure terms dominating at sub-ion scales. The strength of the non-ideal electron pressure contribution is stronger than expected from linear kinetic Alfvén waves and a partial anti-alignment with the Hall electric field is present, linked to the relative importance of electron diamagnetic currents in the turbulence. The relative contribution of linear and nonlinear electric fields scale with the turbulent fluctuation amplitude, with nonlinear contributions playing the dominant role in shaping for the intervals examined in this study. Overall, the sum of the Ohm’s law terms and measured agree to within ~20% across the observable scales. These results both confirm general expectations about the behavior of in turbulent plasmas and highlight features that should be explored further theoretically.

William K. Peterson

and 10 more

Martian sub-solar electron temperatures obtained below 250 km are examined using data obtained by instruments on the Mars Atmosphere Evolution Mission (MAVEN) during the three sub-solar deep dip campaigns and a one-dimensional fluid model. This analysis was done because of the uncertainty in MAVEN low electron temperature observations at low altitudes and the fact that the Level 2 temperatures reported from the MAVEN Langmuir Probe and Waves (LPW) instrument are more than 400 Kelvin above the neutral temperatures at the lowest altitudes sampled (~120 km). These electron temperatures are well above those expected before MAVEN was launched. We find that an empirical normalization parameter, neutral pressure divided by local electron heating rate, organized the electron temperature data and identified a similar altitude (~160 km) and time scale (~2,000 s) for all three deep dips. We show that MAVEN data are not consistent with a plasma characterized by electrons in thermal equilibrium with the neutral population at 100 km. Because of the lack data below 120 km and the uncertainties of the data and the cross sections used in the one dimensional fluid model above 120 km, we cannot use MAVEN observations to prove that the electron temperature converges to the neutral temperature below 100 km. However, the lack of our understanding the electron temperature altitude profile below 120 km does not impact our understanding of the role of electron temperature in determining ion escape rates because ion escape is determined by electron temperatures above 180 km.