Rui Li

and 2 more

Ozone (O3) levels in East China suffered from rapid increases during the COVID-19 period. To clarify the reason for the O3 increase, a continuous campaign was performed in a industrial city in North China Plain (NCP). Meanwhile, the machine-learning technique and the box model were employed to reveal the mechanisms of O3 increase from the perspective of meteorology and photochemical process, respectively. The result suggested that the ambient O3 level in Tangshan increased from 18.7 ± 4.63 to 45.6 ± 8.52 μg/m3 (143%) after COVID-19 lockdown, and the emission reduction and meteorology contributed to 77% and 66% of this increment, respectively. The higher Wind speed (WS) coupled with regional transport played a significant role on O3 increase (30.8 kg/s). The O3 sensitivity verified that O3 production was highly volatile organic compounds (VOC)-sensitive (Relative incremental reactivity (RIR): 0.75), while the NOx showed the negative impact on O3 production in Tangshan (RIR: -0.59). It suggested that the control of VOCs rather than NOx might be more effective in reducing O3 level in Tangshan because it was located on the VOC-limited regime. Besides, both of ozone formation potential (OFP) analysis and observation-based model (OBM) demonstrated that the alkenes (36.3 ppb) and anthropogenic oxygenated volatile organic compounds (OVOCs) (15.2 ppb) showed the higher OFP compared with other species, and their reactions released a large number of HO2 and RO2 radicals. Moreover, the concentrations of these species did not experience marked decreases after COVID-19 lockdown, which were major contributors to O3 increase during this period.