Gautam Bisht

and 2 more

The vertical structure of vegetation canopies creates micro-climates, which can substantially affect ecosystem responses to climate change. However, the land components of most Earth System Models, including the Energy Exascale Earth System Model (E3SM), typically neglect vertical canopy structure by using a single layer big-leaf representation to simulate water, \cotwo, and energy exchanges between the land and the atmosphere. In this study, we developed a standalone Multi-Layer Canopy Model (MLCMv1) for the E3SM Land Model (ELM) to resolve the micro-climate created by vegetation canopies. The support for the heterogeneous computation architectures is included by using the Portable Extensible Toolkit for Scientific Programming. The numerical implementation of ELM-MLCMv1 was verified against CLM-ml\_v1 for a month-long simulation using data from the Ameriflux US-University of Michigan Biological Station (US-UMB) site. Model structural uncertainty was explored by performing control simulations for five stomatal conductance models (SCMs). All SCMs after calibration were able to accurately match observations of sensible and latent heat flux, though the bias of the three SCMs with plant hydrodynamics (PHD) was slightly lower than that of two SCMs without PHD. Additionally, six idealized simulations were performed to study the impact of environmental variables on canopy processes. All SCMs agreed on the direction of simulated changes in canopy processes due to the changes in these environmental variables. ELM-MLCMv1 achieves a speedup of 25-50 times when comparing performance on a GPU relative to a CPU. This study provides the first necessary model development for including the representation of vertical canopies within ELM.

Jean-Christophe Golaz

and 70 more

This work documents version two of the Department of Energy’s Energy Exascale Earth System Model (E3SM). E3SM version 2 (E3SMv2) is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60 km in the mid-latitudes and 30 km at the equator and poles. The model performance is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima (DECK) simulations augmented with historical simulations as well as simulations to evaluate impacts of different forcing agents. The simulated climate is generally realistic, with notable improvements in clouds and precipitation compared to E3SMv1. E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K which is now within the plausible range based on a recent World Climate Research Programme (WCRP) assessment. However, E3SMv2 significantly underestimates the global mean surface temperature in the second half of the historical record. An analysis of single-forcing simulations indicates that correcting the historical temperature bias would require a substantial reduction in the magnitude of the aerosol-related forcing.

Donghui Xu

and 4 more

Floodplain inundation links river and land systems through significant water, sediment, and nutrient exchanges. However, these two-way interactions between land and river are currently missing in most Earth System Models. In this study, we introduced the two-way hydrological coupling between the land component, ELM, and the river component, MOSART, in Energy Exascale Earth System Model (E3SM) to study the impacts of floodplain inundation on land and river processes. We calibrated the river channel geometry and developed a new data-driven inundation scheme to improve the simulation of inundation dynamics in E3SM. The new inundation scheme captures 96% of the spatial variation of inundation area in a satellite inundation product at global scale, in contrast with 7% when the default inundation scheme of E3SM was used. Global simulations including the new inundation scheme performed at resolution with and without two-way land-river coupling were used to quantify the impact of coupling. Comparisons show that two-way coupling modifies the water and energy cycle in 20% of the global land cells. Specifically, riverine inundation is reduced by two-way coupling, but inland inundation is intensified. Wetter periods are more impacted by the two-way coupling at the global scale, while regions with different climates exhibit different sensitivities. The two-way exchange of water between the land and river components of E3SM provides the foundation for enabling two-way coupling of land-river sediment and biogeochemical fluxes. These capabilities will be used to improve understanding of the interactions between water and biogeochemical cycles and their response to human perturbations.

Dalei Hao

and 7 more

Sub-grid topographic heterogeneity has large impacts on surface energy balance and land-atmosphere interactions. However, the impacts of representing sub-grid topographic effects in land surface models (LSMs) on surface energy balance and boundary conditions remain unclear. This study analyzed and evaluated the impacts of sub-grid topographic representations on surface energy balance, turbulent heat flux and scalar (co-)variances in the Energy Exascale Earth System Model (E3SM) land model (ELM). Three sub-grid topographic representations in ELM were compared: (1) the default sub-grid structure (D), (2) the recently developed sub-grid topographic structure (T), and (3) high spatial resolution (1KM). Additionally, two different solar radiation schemes in ELM were compared: (1) the default plane-parallel radiative transfer scheme (PP) and (2) the parameterization scheme (TOP) that accounts for sub-grid topographic effects on solar radiation. A series of simulations with the three grid structures (D, T and 1KM) and two treatments of solar radiation (TOP and PP) were carried out in the Sierra Nevada, California. There are significant differences between TOP and PP in the 1-km simulated surface energy balance, but the differences in the mean values and standard deviations become small when aggregated to the grid-scale (i.e., 0.5°). The T configuration better mimics the 1KM simulations than the D configuration, and better captures the sub-grid topographic effects on surface energy balance as well as surface boundary conditions. These results underline the importance of representing sub-grid topographic heterogeneities in LSMs and motivate future research to understand the sub-grid topographic effects on land-atmosphere interactions over mountain areas.