Marcus N. Pedersen

and 4 more

The most detrimental geomagnetically induced currents (GICs) documented to date have all taken place during geomagnetic storms. Yet, the probability of GICs throughout geomagnetic storms driven by different solar wind transients, such as high-speed streams/stream interaction regions (HSS/SIR) or interplanetary coronal mass ejection (ICME) sheaths and magnetic clouds (MC), is poorly understood. We present an algorithm to detect geomagnetic storms and storm phases, resulting in a catalog of 755 geomagnetic storms from January 1996 to June 2023 with the solar wind drivers. Using these storms and the IMAGE magnetometer network, we study the temporal and spatial evolution of spikes in the external dH\textsubscript{ext}/dt greater than 0.5 nT/s during geomagnetic storms driven by HSS/SIR, sheaths and MCs. Spikes occur more often toward the end of the storm main phase for HSS/SIR and MC-driven storms, while sheaths have spikes throughout the entire main phase. During the main phase most spikes occur in the morning sector around 05 magnetic local time (MLT) and the extent in MLT is narrowest for MCs and widest for sheaths. However, spikes in the pre-midnight sector during the main and recovery phases are most prominent for HSS/SIR-driven storms. During the storm sudden commencement (SSC), three MLT hotspots exist, the post-midnight at 04 MLT, pre-noon at 09 MLT and afternoon at 15 MLT. The pre-noon hotspot has the highest probability of spikes and the widest extent in magnetic latitude.

Marcus N. Pedersen

and 6 more

This study considers 28 geomagnetic storms with Dst $\leq-50$ nT driven by high-speed streams (HSSs) and associated stream interaction regions (SIRs) during 2010-2017. Their impact on ionospheric horizontal and field-aligned currents (FACs) have been investigated using superposed epoch analysis of SuperMAG and AMPERE data, respectively. The zero epoch ($t_0$) was set to the onset of the storm main phase. Storms begin in the SIR with enhanced solar wind density and compressed southward oriented magnetic field. The integrated FAC and equivalent currents maximise 40 and 58 min after $t_0$, respectively, followed by a small peak in the middle of the main phase ($t_0$+4h), and a slightly larger peak just before the Dst minimum ($t_0$+5.3h). The currents are strongly driven by the solar wind, and the correlation between the Akasofu $\varepsilon$ and integrated FAC is $0.90$. The number of substorm onsets maximises near $t_0$. The storms were also separated into two groups based on the solar wind dynamic pressure p_dyn in the vicinity of the SIR. High p_dyn storms reach solar wind velocity maxima earlier and have shorter lead times from the HSS arrival to storm onset compared with low p_dyn events. The high p_dyn events also have sudden storm commencements, stronger solar wind driving and ionospheric response at $t_0$, and are primarily responsible for the first peak in the currents after $t_0$. After $t_0+2$ days, the currents and number of substorm onsets become higher for low compared with high p_dyn events, which may be related to higher solar wind speed.