Giorgia Ausilio

and 11 more

Survival among juvenile ungulates is an important demographic trait affecting population dynamics. In many systems, juvenile ungulates experience mortality from large carnivores, hunter harvest and climate-related factors. These mortality sources often shift in importance both in space and time. While wolves (Canis lupus) predate on moose (Alces alces) throughout all seasons, brown bear (Ursus arctos) predation and human harvest happen primarily during early summer and fall, respectively. Hence, understanding how the mortality of juvenile moose is affected by predation, harvest and climate is crucial to adaptively managing populations and deciding sustainable harvest rates. We used data from 39 female moose in south-central Scandinavia to investigate the mortality of 77 calves in summer/fall and winter/spring, in relation to carnivore presence (defined as wolf presence and bear density), summer productivity, secondary road density, winter severity and migratory strategy (migratory versus resident) using logistic regressions. Summer mortality varied significantly between years but was not correlated to any of our covariates. In winter, calf mortality was higher with deeper snow in areas with wolves compared to areas without and increased more strongly with an increasing proportion of clearcuts/young forests in the presence of wolves compared to when wolves were absent. Lastly, increasing hunting risk was associated with higher calf mortality, and migratory females had higher calf mortality compared to stationary ones. Our study provides useful insight into mortality rates of moose calves coexisting with two large carnivores and with an intensive harvest pressure. Increasing our understanding of the mechanisms driving calf mortality both in summer and winter will become increasingly important if the populations of wolves and bears continue to expand and the moose population declines, and both summers and winters become warmer.

Martin Mayer

and 8 more

Efficient wildlife management requires precise monitoring methods, e.g., to estimate population density, reproductive success, and survival. Here, we compared the efficiency of drone and ground approaches to detect and monitor GPS-collared female moose (Alces alces) and their calves. Moreover, we quantified how drone (n = 42) and ground (n = 41) approaches affected moose behavior and space use (n = 24 individuals). The average time used for drone approaches was 17 minutes compared to 97 minutes for ground approaches, with drone detection rate being higher (95% of adult female moose and 88% of moose calves) compared to ground approaches (78% of adult females and 82% of calves). Drone detection success increased at lower drone altitudes (50-70 m). Adult female moose left the site in 35% of drone approaches (with > 40% of those moose becoming disturbed once the drone hovered < 50 m above ground) compared to 56% of ground approaches. We failed to find short-term effects (3-h after approaches) of drone approaches on moose space use, but moose moved > 4-fold greater distances and used larger areas after ground approaches. Similarly, longer-term (24-h before and after approaches) space use did not differ between drone approaches compared to days without known disturbance, but moose moved comparatively greater distances during days of ground approaches. In conclusion, we could show that drone approaches were highly efficient to detect adult moose and their calves in the boreal forest, being faster and less disturbing than ground approaches, potentially making them a useful tool to monitor and study wildlife.